Proof Strategies

On a single page here:

http://theaetetus.tamu.edu/logic/lecture/SL-Strategies.pdf

Atom

 Assume its negation for RAA, then seek a contradiction; by means of the contradiction, discharge the assumption by RAA, obtaining the desired atom.

(~P
$$\rightarrow$$
 Q), ~Q |- P

1	$(1) (^{\sim}P \rightarrow Q)$	Α	
2	(2) ~Q	Α	- P
3	(3) ~P	A (for RAA)	
1,3	(4) Q	1,3 →E	
1,2	(5) P	2,4 RAA (3)	

N I		⊥:
IN	ega	tion
	\sim	

 Assume the unnegated WFF for RAA, then seek a contradiction, discharge the assumption, obtaining the desired negation.

1 (1) ~(P v Q) A |-~P

2 (2) P A (for RAA) 2 (3) (P v Q) 2 vI

1 (4) ~P 1,3 RAA (2)

Conditional

 Assume its antecedent for →I, then establish its consequent; discharge the assumed antecedent by →I, obtaining the desired conditional. (P v Q) \mid - (\sim P \rightarrow Q)

 $\begin{array}{cccc} 1 & & (1) \ (P \ v \ Q) & & A & |- \ (^{\sim}P \rightarrow Q) \\ 2 & & (2) \ ^{\sim}P & & A \ (for \rightarrow I) \end{array}$

1,2 (3) Q 1,2 vE

1 (4) ($^{\sim}P \rightarrow Q$) 3 \rightarrow I (2)

Conjunctions

• Obtain its conjuncts separately, then use &I to obtain the desired conjunction.

 $(P \rightarrow Q)$, $(P \& R) \mid - (Q \& R)$

1 (1) $(P \rightarrow Q)$ A

2 (2) (P & R) A |-(Q & R)

2 (3) R 2 & E

2 (4) P 2 &E

1,2 (5) Q 1,4 \rightarrow E

1,2 (6) (Q & R) 3,5 &I

Biconditional

• Obtain the two required conditionals separately, then use ↔I to obtain the desired biconditional.

$$(P \leftrightarrow Q) \mid - (Q \leftrightarrow P)$$

- $1 \qquad \text{(1) (P} \leftrightarrow \text{Q)} \qquad \text{A} \qquad \qquad | \text{- (Q} \leftrightarrow \text{P)}$
- $1 \qquad \text{(2) (Q} \rightarrow \text{P)} \qquad 1 \mathop{\leftrightarrow} \text{E}$
- 1 (3) $(P \rightarrow Q)$ 1 \leftrightarrow E
- 1 (4) $(Q \leftrightarrow P)$ 2,3 $\leftrightarrow I$

Disjunction

- Assume its negation for RAA, then perform the following three-line procedure:
 - I. Assume one of the disjuncts of the disjunction
 - II. Use vI to obtain the disjunction
 - III. Use RAA to discharge the assumed disjunct

(Bear in mind that this procedure can be repeated, starting with the other disjunct.)

~(~P & ~Q) |- (P v Q) (1) ~(~P & ~Q) A |- (P v Q) 1 2 (2) ~(P v Q) A (for RAA) 3 2 6 6 (3) P A (for RAA) (4) (P v Q) 3 vI (5) ~P 2,4 RAA (3) (6) Q A (for RAA) (7) (P v Q) 6 vI 2 2 1 (8) ~Q 2,7 RAA (6) (9) (~P & ~Q) 5,8 &1 1,9 RAA (2) (10) (P v Q)

•	